Background
Telemedicine is defined as the delivery of health care and sharing of medical knowledge over a distance using telecommunication means. Thus, the aim of Telemedicine is to provide expert-based health care to understaffed remote sites and to provide advanced emergency care through modern telecommunication and information technologies. The concept of Telemedicine was introduced about 30 years ago through the use of nowadays-common technologies like telephone and facsimile machines. Today, Telemedicine systems are supported by State of the Art Technologies like Interactive video, high resolution monitors, high speed computer networks and switching systems, and telecommunications superhighways including fiber optics, satellites and cellular telephony [1].The availability of prompt and expert medical care can meaningfully improve health care services at understaffed rural or remote areas. The provision of effective emergency Telemedicine and home monitoring solutions are the major fields of interest discussed in this study. There are a wide variety of examples where those fields are crucial. Nevertheless, Ambulances, Rural Health Centers (RHC) and Ships navigating in wide seas are common examples of possible emergency sites, while critical care telemetry and Telemedicine home follow-ups are important issues of telemonitoring. In emergency cases where immediate medical treatment is the issue, recent studies conclude that early and specialized pre-hospital patient management contributes to the patient's survival [2]. Especially in cases of serious head injuries, spinal cord or internal organs trauma, the way the incidents are treated and transported is crucial for the future well being of the patients.
A quick look to past car accident statistics points out clearly the issue: During 1997, 6753500 incidents were reported in the United States [3] from which about 42000 people lost their lives, 2182660 drivers and 1125890 passengers were injured. In Europe during the same period 50000 people died resulting of car crash injuries and about half a million were severely injured. Furthermore, studies completed in 1997 in Greece [4], a country with the world's third highest death rate due to car crashes, show that 77,4 % of the 2500 fatal injuries in accidents were injured far away from any competent healthcare institution, thus resulting in long response times. In addition, the same studies reported that 66% of deceased people passed away during the first 24 hours.
Coronary artery diseases is another common example of high death rates in emergency or home monitoring cases since still two thirds of all patients die before reaching the central hospital. In a study performed in the UK in 1998 [5], it is sobering to see that among patient above 55 years old, who die from cardiac arrest, 91% do so outside hospital, due to a lack of immediate treatment. In cases where thrombolysis is required, survival is related to the "call to needle" time, which should be less than 60 minutes [6]. Thus, time is the enemy in the acute treatment of heart attack or sudden cardiac death (SCD). Many studies worldwide have proven that a rapid response time in pre-hospital settings resulting from treatment of acute cardiac events decreases mortality and improves patient outcomes dramatically [7]-[12]. In addition, other studies have shown that 12-lead ECG performed during transportation increase available time to perform thrombolytic therapy effectively, thus preventing death and maintaining heart muscle function [13]. The reduction of all those high death rates is definitely achievable through strategies and measures, which improve access to care, administration of pre-hospital care and patient monitoring techniques.
Critical care telemetry is another case of handling emergency situations. The main point is to monitor continuously intensive care units' (ICU) patients at a hospital and at the same time to display all telemetry information to the competent doctors anywhere, anytime [14]. In this pattern, the responsible doctor can be informed about the patient's condition at a 24-hour basis and provide vital consulting even if he's not physically present. This is feasible through advanced telecommunications means or in other words via Telemedicine.
Another important Telemedicine application field is home monitoring. Recent studies show that [15] the number of patients being managed at home is increasing, in an effort to cut part of the high hospitalization's cost, while trying to increase patient's comfort. Using low-cost televideo equipment that runs over regular phone lines, providers are expanding the level while reducing the frequency of visits to healthcare institutions [16]. In addition, a variety of diagnostic devices can be attached to the system giving to the physician the ability to see and interact directly with the patient. For example, pulse oximetry and respiratory flow data can be electronically transmitted (for patients with chronic obstructive pulmonary disease). Diabetes patients can have their blood glucose and insulin syringe monitored prior to injection for correct insulin dosage. Furthermore, obstetric patients can have their blood pressure and fetal heart pulses monitored remotely and stay at home rather than prematurely admitted to a hospital.
It is common knowledge that people that monitor patients at home or are the first to handle emergency situations do not always have the required advanced theoretical background and experience to manage properly all cases. Emergency Telemedicine and home monitoring can solve this problem by enabling experienced neurosurgeons, cardiologists, orthopedics and other skilled people to be virtually present in the emergency medical site. This is done through wireless transmission of vital biosignals and on scene images of the patient to the experienced doctor. A survey [17] of the Telemedicine market states that emergency Telemedicine is the fourth most needed Telemedicine topic with 39.8% coverage of market requests while home healthcare covers 23.1%. The same survey also points out that the use of such state of the art technologies has 23% enhanced patient outcomes.
Several systems that could cover emergency cases [18]-[23], home monitoring cases [24]-[25] and critical care telemetry [14] have been presented over the years. Recent developments in mobile telecommunications and information technology enhanced capability in development of telemedicine systems using wireless communication means [26]-[32]. In most cases however only the store and forward procedure was successfully elaborated, while the great majority of emergency cases do require real time transmition of data.
In order to cover as much as possible of the above different growing demands we created a combined real-time and store and forward facility that consists of a base unit and a telemedicine unit where this integrated system:
• Can be used when handling emergency cases in ambulances, RHC or ships by using the Telemedicine unit at the emergency site and the expert's medical consulting at the base unit
• Enhances intensive health care provision by giving the telemedicine unit to the ICU doctor while the base unit is incorporated with the ICU's in-house telemetry system
• Enables home telemonitoring, by installing the telemedicine unit at the patient's home while the base unit remains at the physician's office or hospital.
The Telemedicine device is compliant with some of the main vital signs monitor manufacturers like Johnson & Johnson CRITIKON Dinamap Plus and Welch Allyn – Protocol (Propaq). It is able to transmit both 3 and 12 lead ECGs, vital signs (non-invasive blood pressure, temperature, heart rate, oxygen saturation and invasive blood pressure) and still images of a patient by using a great variety of communication means (Satellite, GSM and Plain Old Telephony System – POTS). The base unit is comprised of a set of user-friendly software modules that can receive data from the Telemedicine device, transmit information back to it and store all data in a database at the base unit. The communication between the two parts is based on the TCP/IP protocol. The general framework for the above system was developed under EU funded TAP (Telematics Applications Programme) projects, the EMERGENCY 112 project(HC 4027)[33] and the Ambulance project(HC1001) [22].
Methods
Trends and needs of Telemedicine systems
As mentioned above, scope of this study was to design and implement an integrated Telemedicine system, able to handle different Telemedicine needs especially in the fields of:• Emergency health care provision in ambulances, Rural Hospital Centers (or any other remote located health center) and navigating Ships
• Intensive care patients monitoring
• Home telecare, especially for patients suffering from chronic and /or permanent diseases (like heart disease).
In other words we determined a "Multi-purpose" system consisting of two major parts: a) Telemedicine unit (which can be portable or not portable depending on the case) and b) Base unit or doctor's unit (which can be portable or not portable depending on the case and usually located at a Central Hospital).
Figure 1 describes the overall system architecture. In each different application the Telemedicine unit is located at the patient's site, whereas the base unit (or doctor's unit) is located at the place where the signals and images of the patient are sent and monitored. The Telemedicine device is responsible to collect data (biosignals and images) from the patient and automatically transmit them to the base unit. The base unit is comprised of a set of user-friendly software modules, which can receive data from the Telemedicine device, transmit information back to it and store important data in a local database. The system has several different applications (with small changes each time), according to the current healthcare provision nature and needs.
No comments:
Post a Comment